A priori error estimates for Lagrange interpolation on triangles
نویسندگان
چکیده
منابع مشابه
Chapter 4 A priori error estimates for conforming finite element approximations 4 . 1 Interpolation in
For a simply-connected Lipschitz domain Ω ⊂ lR d and m ∈ lN 0 we consider the quotient space W m+1,p (Ω)/P m (Ω), p ∈ [1, ∞], whose elements are equivalence classes [u] according to [u] := { w ∈ W m+1,p (Ω) | w − u ∈ P m (Ω) }. We recall that W m+1,p (Ω)/P m (Ω) is a Banach space with respect to the Sobolev quotient norm (4.1) [u] m+1,p,Ω := inf p∈P m (Ω) u + p m+1,p,Ω. A basic result states th...
متن کاملChapter 5 A priori error estimates for nonconfor
and assume that the conditions of the Lax-Milgram lemma are satisfied so that (5.1) admits a unique solution u ∈ V . We assume that H is a null sequence of positive real numbers and (Vh)h∈H an associated family of conforming finite element spaces Vh ⊂ V, h ∈ H. We approximate the bilinear form a(·, ·) : V × V → lR and the functional `(·) : V → lR in (5.1) by bounded bilinear forms and bounded l...
متن کاملNew A Priori FEM Error Estimates for Eigenvalues
We analyze the Ritz–Galerkin method for symmetric eigenvalue problems and prove a priori eigenvalue error estimates. For a simple eigenvalue, we prove an error estimate that depends mainly on the approximability of the corresponding eigenfunction and provide explicit values for all constants. For a multiple eigenvalue we prove, in addition, apparently the first truly a priori error estimates th...
متن کاملError estimates for generalized barycentric interpolation
We prove the optimal convergence estimate for first order interpolants used in finite element methods based on three major approaches for generalizing barycentric interpolation functions to convex planar polygonal domains. The Wachspress approach explicitly constructs rational functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the functions, and the Ha...
متن کاملError estimates for some quasi-interpolation operators
‖u− Ihu‖L2(T ) ≤cThT ‖∇ku‖L2(ω̃T ), ‖u− Ihu‖L2(E) ≤cEh E ‖∇ku‖L2(ω̃E). Here, k ∈ {1, 2}, Ih is some quasi-interpolation operator, T and E are a simplex and a face thereof, hT and hE measure the size of T and E, and ω̃T and ω̃E are neighbourhoods of T and E which should be as small as possible. Note that the interpolate Ihu never needs to be computed explicitely. Moreover, for problems in two and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 2015
ISSN: 0862-7940,1572-9109
DOI: 10.1007/s10492-015-0108-4